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ABSTRACT

In a previous memorandum (TM 67-2034-7) an approximate
average power spectrum was derived for the response of an ideal
limiter - phase detector - video filter cascade as a function
of the signal-to-noise power ratio (SNR) at the limiter input.
The input to the limiter was assumed to be the sum of a phase
modulated sinusold and a stationary gaussian noise. A complete
solution is given in the present work for the response spectrum
of a bandpass —zero memory -~ nonlinearity in cascade with a phase
detector. The output power spectrum of any bandpass filter
following this cascade is determined. In particular, the SNR
can be found at the output of any filter that passes the power
spectrum in a zone around a harmonic of the signal carrier
frequency. When a video filter follows the phase detector
and the nonlinearity is the 1deal limiter, the complete solution
is obtained for the problem considered in TM-67-2034-7. Some
examples are presented of modulations fer which the phase
detector response has an average power spectrum. These are
(1) biphase, (2) sinusoid with uniformly distributed random -

initial phase, and (3) the stationary gaussian process.
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INTRODUCTION

The mathematical model used to predict communication
performance for the Apollo Unified S-Band System was defined
by Mr. J. D. Hill in the Bellcomm Technical Memorandum TM #65-
2021-3. Portions of this model have been questioned because
of the lack of correlation between laboratory measurements
and the predicted performance generated from the model. An
area of the model that is frequently questioned is the treat-
ment of the performance of the bandpass limiter - phase detector
video filter cascade shown in Figure (1). This cascade exists
in both the ground and spacecraft receivers of the Apollo USB
System.

An approximate solution is known for the output
power spectrum Sz(w) of the cascade in Figure (1) as a function

of the signal-to-noise power ratio (SNR) into the limiter.(l)
This derivation of Sz(w) holds for the signal

s(t) =P cos[wct oo, t a(t)] (1)

where P and w, are constants, e(t) is a member of a class of

random process phase modulations, and ¢c is a random variable

Cx(t)=s(t)+n(t)

‘ wi{t - t
5(¢) sp |y ?d?il 7 (¢) BP ~ /¢ )_ Video a(®)
™| Filter 1T%X§r Filter Filter|[— *
N Carrier
Reference

Sin(wct+¢c)

Figure 1. Cascade of A Bandpass Limiter - Phase Detector - Video
Filter
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representing the initial carrier phase. The carrier reference ¢C

is assumed to be equally probable in the interval [0,27] with
probability density 1/2w. The signals considered are nar-
row band limited processes. The bandpass filters are cor-
respondingly narrow bandpass around W4y and are symmetrical

about W, . With these restrictions the post-limiter bandpass
filter is superfluous in deriving S,(w).

In this memorandum the complete solution for Sz(m)

in reference 1 1s obtained as a special case of a more general
system analysis. A solution is given for the complete power
spectrum of w(t) in Figure 2 as a function of the SNR into the
zero memory nonlinearity g(X) when the signal is s(t) in
equation (1) and n(t) is a stationary gaussian process with

. 2
Zzero mean and variance ¢

s(t) x(t)=3(t)+n(t) y(t) w(t)
BP e
— ™ Filter = y=g(x) p—r
N
Carrier
Reference

Sin(wct+¢c)

Figure 2. Cascade of Bandpass Nonlinearity and Phase Detector

For the cascade in Figure 1 the nonlinearity is

+¢ when x>0

(@]

g(x) = 2(x) = when x=0 (2)

- % when x<0

where X = s+n.

The spectrum Sw(w) is found as the Fourier transform
of the autocorrelation function Rw(tl,t2) when the latter is a
function only of the time difference 1 = tz—tl. The time
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independence of R is a function of 6 (t). As in the derivation
of Sz(w) in reference (1), there are some important cases of
6(t) for which S (w) exists.

If the nonlinearity has a narrow band-limited input

x(t), the spectrum Sw(w) is limited to narrow bands around the
frequencies ! pw, where p=0,1,2,... . Then 5,(w) is the part

of Sw(m) corresponding to p=0 when g(x) = 2(x) in Figure (2).

DISCUSSION

Derivation of Rw(r) and Sz(m)

The analysis is based on the transform representation

. . (2 R .
of a zero-memory nonllnearlty.( ) A transform pair is defined by

f(w) = g(x)e”Fax
(3)
g(x) = zrx | £(w) &* aw
C
where C is a contour in the complex w-plane. In terms of the
transform f(w),
_ 1 . STARE ¢ [
w(t) = o137 fw) 31n(wct+¢c)e e dw (1)
C
By definition
R, (ty1,t5) = E {w(ty) - w(ty)) (5)

where E{ } denotes the expectation taken with respect to 00
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6(t) and n(t). Throughout the development, it is assumed that
6, n and ¢C are jointly statistically independent.

For the symmetrical filter about w, the autocorrelation

c
function of n(t) is RD(T) = RV(T) - cos w T where v(t) is a low

pass random function. Since n(t) is stationary gaussian with

variance RV(O) = 02,

E{exp n(tl)ml s exp n(tz)mz} =

(6)
2 2

g
exp =— + R, (1) * cos w T * wiw, * 2

(3)

where E{ } is the expectation with respect to n.

With the substitution of (4) and (6) into (5) the

identity(u)

o]

expla cos z] = Z € Im(a) cos mz (7)

m=0
Ifl, m=0
E... =

o Lz, m=1,2,3,

gives Rw(tl’t2)' The complete result is
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oo 2q h
.__._:_q s
Rw(tl’ E: 2q E{SJ.nel . 31ne2}
4=0 (q! )
o (e o] oo u
+ L 5: 2: 2: Rv h2 E{cos[a6-,-a8.+ps]}
p=1 m=0 q:O d4-1q
+ n2 Efcos[86,-86.+ps])
B,u 1 2™P
- B u . uE{cos[se —a62+p6]
+ cos[a91—862+p6]}
1 Y
+ 5 z z h E{COS[yel—y62—DSJ}
) q'(q+m)' Yo

- hg,uhy,uE{cos[gel—y62—p6]

+ Cos[yel—yﬁz—péj}

where § = ¢ 1
u= 29 +m

o =m-p + 1

y=m+p+ 1

(8)
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For each pair of integers (r,k), h is a constant given by

r,k
2 2
g W

_ 1 7k
hr,k = 507 flw)e w Ir(wP)dw (9)

The details of the derivation of (8) are in Appendix A-I.

In equation (8) there are three key factors. These
are:
1. Ru(r), the autocorrelation function of the lowpass

equivalent process for n(t),

2. h, ,, a constant for each pair of integers (r,k) that
3
is determined by the form of g(x) and the input SNR
to the nonlinearity, and

3. the expectation with respect to 6
E{cos[Ael—Bezipd]} (10)

where A, B and p are integers. Since RV is independent
of time, the function Rw(tl’t2) depends only on t if (10)
has this property.

Some important cases of 6(t) for which (10) is time

independent are listed below. Equation (10) is derived for each
case in Appendix IT.

1. The biphase waveform 6(t) = X|6| where the mean is zero
and th

el

“ s - L . . 5
auto correlation function is "~

[¢}]

<]

2
Ro(t) = [0]°(1~5) ror || ST (11)

and zero for all |t| > T. For this case (10) is given
by (A-20).
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2. The random tone

6(t) = mysin(w t+g) (12)
where & is a random variable with a uniform probability
density on [0,2n]. In this case (10) is given in (A-21).

3. The stationary gaussian process with zero mean and
variance og. For this modulation (10) is given in (A-24).

When (10) depends only on t for integers A, B and p,
Sw(w) is the infinite sum of terms of the type

FIR,] % FlE{cos[Ae,-Be,*ps1}] (13)

where F denotes the Fourier transform with respect to t and (%)
is the convoluticn of the two frequency spectra.

In Appendix A-II it is shown that E{cos[Ael—Bez]}
depends only on 1 and that E{sin[Ael—Be2]} is zero for the three
modulation cases presented above. For each case, Sw(w) is given

by (A-25). The spectrum is an infinite sum of terms with the
form

FIR,(x)] # Flcos pu,t] # S, (A,B,u) (14)

where

So[A,B,u] = F[E{cos[Ae,-B6,]}]

for any pair of integers A and B.
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In (13) the spectrum F[RS] is a result of the noise
n(t). Then any term of the form (13) in (8) with u$0 is an

Interference term. For the first sum in (8) the RSO) term is

% hi’o E{sinelsinez} (15)

(0)

v terms occur when 2q+m = 0
where g > 0 and m 2 0. These terms are

For the second sum in (8), the R

1 2
5 2: }ﬂyJ”O E{cos[(p—l)el—(p—l)eg—pa]} +
p=1

2 : -
hp+1,o E{COS[(p+1)61—(p+l)62-y6]} -

hp+1,0hp-l,0 E{cos[(p+l)el—(p-1)82—p6]

+ cos[(p-l)el-(p+l)e2—p6]} (16)

The term (15) and some of those in (16) are "signal" terms. Not
all terms of (16) can be called signal terms since some of these
are intermodulation. The signal term (15) appears at the output
of the video filter in Figure (1). The signal components in (16)
exist around integer multiples of the carrier w, and can be

obtained with a bandpass filter instead of the video filter fol-
lowing the phase detector in Figure (1).
The function Rz(tlstg) is found for the system in

Figure (1) by taking only the p=0 term of equation (8). When o
is such that Rz(tl,t2) = Rz(r) the complete spectrum of z is
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HOEE DN e - (17)

2 2
[ha’u Sv(w,u) * Se(a,a,w) + hb,u Sv(m,u) * Se(b,b,w)

- ha,u hb,u Sv(m,u) * {Se(a,b,w)+ Se(b,a,w)}]
where a = m+l, b = m-1, u = 2q+m,

s, (w,u) = F[RS(T)]

and

Sy(a,b,u) F[E{coslae,~-bs,]1}]

The h-Parameters When g(x) 2(x)

When g(x) is the ideal limiter, equation (9) has a
closed form solution in terms of the modifled Bessel functions
I,(x/2) and I;(x/2) where x = P /202 1s the input SNR to the

limiter. In Table 1, the lower order h parameters are given.
“rom the entries in Table 1 any h parameter in equation (8) can
be found with the recursion relationships A-30, A-31 and A-32.
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r k hr,k
1 o 2P -x/2 [Io(x/e) + Il(x/z)]
V2no
o |1 j? 2 mX/2 I,(x/2)
m™ O
> 1 ;f§2 e~¥/2 I, (x/2)
m g
P -x/2
1 |2 | =2 ¢ I.(x/2) = I.(x/2)
VTR [ 0 1 ]
-P —X/2 ) u 3
3 |2 e I.(x/2) - ‘1 + —) 1.(x/2)
/5;03 Lo X 1 S
Y29 =x/2 "
0 3 /F03 e [(l—X)IO(x/Z) + xIl(X/Z)j
2 ,
LP -x/2 | 1
2 3 ——2/_:? e }.IO(X/2) - (1 + ;) Il(X/2)]
! . =2 P _-x/2 [ 1+ 4y 13) I.(x/2) 1+ 3] 1.¢ /2ﬂ
3 =5 °© x V2l h - x| “o'*/e))
i 1
18| s e (201 (/2) ¢+ (2x-1)1 (x/2)
Vorse j
Table 1.

Closed Form Solutions of h
r,k
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Conclusions and Remarks

A general second order statistical analysis is
presented for the cascade of a narrow bandpass nonlinearity
and an ideal phase detector. In this analysis, the input
to the nonlinearity is assumed to be the sum of a stationary
gaussian noise and a fixed amplitude phase modulated sine
wave. The autocorrelation function of the cascade response
i1s obtained as a function of the signal-to-noise ratio x at
the nonlinearity input, the normalized autocorrelation func-
tion of the lowpass equivalent for the nonlinearity input
noise,rv(r); and the phase modulation 6(t).

In general, the cascade response w(t) has the
autocorrection function Rw(tl’t2) that is time dependent.
However, for some important cases of 8(t), Rw(tl’t2) = RW(T),

and the cascade response has the average power spectrum
Sw(w) = F[Rw(r)] where F 1s the Fourler transform operation

with respect to t. The cases of 6(t) considered that yield
RW(T) are the random biphase waveform 6= +|6|, the single

tone 6(t) = mlsin(wlt+g), and the stationary gaussian process
with autocorrelation function Ke(r) and zero mean.

The dependence of Rw(tl,t2) on the nonlinearity input

SNR x appears in the h parameters. These parameters can be
obtained in closed form as functions of the modified Bessel

functions Io(g) and Il(g)_ The lower order h parameters
encountered in the first few terms of the series for R were

found, and recurrence relations were derived with ‘- whith
higher order h parameters follow easily.

For the modulation types that make RW a function of
T alone the power spectrum Sw(w) is known for all values of

the input SNR x into the nonlinearity. This spectrum consists
of spectral zones around nw_  where n = C, 1, 2 In

=5 S
each zone there are three types of terms; signal noise, and

intermodulation. In any frequency band at the output of the

phase detector in Figure 2, the SNR can be determined for any
value of x into the nonlinearity. The spectrum Sz(w) for

Figure (1) is just the low-pass part of Sw(w) corresponding

to n=0 The complete spectra for w(t) and z(t) are obtained
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in the present work as infinite series, but in any numerical
calculations such as the computation of output SNR, it is
necessary to limit the infinite series representations for S
or Sz to a finite number of terms. Usually only a modest

number of terms for Sw or Sz are necessary to give a good approxi-

mation to either spectrum in any finite output frequency band-
width.

203U4-WDW-jr W. D. Wynn

Attachments
Appendices I-IIT
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APPENDIX I

. DERIVATION OF Rw(tl,t2) IN EQUATION (8)

For the analysis, the input x(t) to the nonlinearity
in Figure (2) is assumed to be narrowband limited by the sym-
metrical bandpass filter with center frequency W, The Laplace

transform solution of a zero memory nonlinearity with stochastic
excitation is used to derive Rw(tl,tZ).(7) The nonlinearity
g(x) is given by

g(x) = E%J— [ f+(w)exwdm + f_(w)exwdw (A-1)
C+ C_
where
+ o
£, (w) = g(x)e”“¥ax for Relw] > 0
0
and
0
£ (w) = g(x)e™*dx ror Relw] < O

The variable w = u + jv is complex with Relw] = u. The contours
C, and C_ are taken parallel to the v-axis in the w-plane with
Re[w] > 0 for c, and Re[w] < 0 for C_. For convenience (A-1)

is written as

g(x) = Plw)e*duw (A-2)
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Since w(t) = sin(wct + ¢) - g(x(t)), the autocorrelation
function of w(t) is

2 w,8;+tw n
1 \ . e 1171
(2“, f £lwy) [f(m2, E{sin(wctl +4) - e
c c

WAS,tw N
2v2 "272
. Sin(wct2 + ¢) o e } dwldw2 (A=-3)

where s, = s(t,) and ny = n(t;), 1=1,2. The order of complex

integration and the expectation operation have been interchangecd
to zet (A-3). For the assumed statistical independence of n(t),
6(t) anc¢ ¢, the expected value in (A-3) factors into

wySy w8,
E sin(wct1 + ) - e . sin(wct2 + ¢) ¢+ e .

exp %[ogwi + ERn(t)wlw? + o2w§] (A4}

where 1 = tq-tl. The form for the cross correlaticn function

wq N wah
E{e 11 e 2 2}'where n(t) is stationary gaussian(3) has been
used in (A-4).

For the case where s(t) is narrow band-limited with
respect to Wqs the fillter in Figure (2) 1s narrow bandpass

and is assumed to be symmetrical about w,. Then n(t) can be
written as(8)

n(t) = X, €Os mct - X sin wct

(A~5)
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where X, and x, are statistically independent statlonary gaussian
random processes; and

Rn(r) = Rv(T) Cos w,T (A-6)

where R (1) = R, (1) = Ry (t). PFor a narrow bandpass IF filter
e s

the transform of Rv(r) is lowpass with a narrow bandwidth compared
to W,
With the substitution of

5 =
0% = ¢ + mct
n ok - ewgg o3 0%
and(u)
Rn(r)wlw2 i Jmoe T
e = 2: I, (wqu R Je (A-T)

R0

(A-3) becomes
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02w2 02 2
1 Y2 oo
1 2 2 1
J ¢ Ye =m0
. h(G,wl,mz)dwldm2 where
(A-8)
h(s’ml’w2) = JIms | E{[ej6+32¢*+e—j5—j2¢*_ej6_e—j6] .

%
' ewchos(61+¢ )4—w2Pcos(62+¢*+5)}

Here § = w,t, and the expectation E is with respect to o¥ and o.

The function h(6,wl,w2) is periodic in & with period
2. The exponential Fourier series representation of h is

p=+oo
h(a,wl,mz) = 2: aper<S where
pP=—o
+1
- 1 h( —jpé
ol.p = ﬁ 5,0.)1(.02) e das . (A;9)
-1

Then

+ 11

- 1 j(m~p)s

o T 3y / e E{ } as
=1

and since ¢¥ has a uniform probability density function on
[0,27] if ¢ has this density function,
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+o 4
ay = Z Z I (0P)T,(0,P) -
rE=eow Kk=ww
1 1 . %
o s dk ej(m+l—p+k)6+3(2+r+k)¢ +j(rel+k62)
8 2n i
-1 -1

J (m-p-1+k) §+j (~2+r+k) ¢*+] (r6,+ke,)
+ e

j(m—p+l+k)6+j(r+k)¢*+j(rel+k62)
- e

J (m=p-1+k)8+j (r+k) ¢ *¥+] (rel+k92)] (A-10)
e

There are four terms to consider in (A-10). The first term
integrates to zero unless

k=p-m~-1 and r=m--p-1
The second term is zero unless

k=-m+1+p and r=m+ 1 ~-p
The third term is zero unless

k=pe-m-1 and r =-p+m+ 1

Finally the fourth term 1is ZzZero unless

k=p-m+land r=m--p-1
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Then in (A-8)

4+
F%) 2: Im(w1w2RV)h(6,wl,w2)

m=—c

+ o0 4+ o0

i—%) Z z Im(‘*’l‘”ERv)O‘loejp(S

P==® M=-c

4+ + o0 + o 4+

]

P==® M==® P=ew0 K=wow

+ o0 +oo.

(-%) Z z ejpaIm(‘”l(”ERv) )

J(m-l—p)61+j(—m—l+p)6
Th-1-p,1T-m-14p,2 Efe

%}
j(m+1l-p) 6,+J (~m+1+p)e 5

I I Eqe

m+l-p,1l ~m+l+p,2

I

J(m+l-ple +3(~m-1+p)e
I Ele 1 2
m+l-p,1t-m-14p,2

Jj(m-1-pl)e.+j(~m+l+p)e
I I £{e 1 2
m-1l-p,1 -m+1l+p,2

where In,l = In(mlp) and I , = In(wéP)-

b

HT) Y Y Y Y 1R )T P)T, (0P edP0E )

(A-11)
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Considering the composition of the double sum in
equation (A-11),

4o 4o © 4+ +o0o ] -1 4+ -1 -1
" LL LI+ r+T L
pPE—® M=~ p:l m=1 p:]_ Mm==0 == m=1 pP=~® mM=-—w
4o -] + o0 -]
+ + 2: + + + (A=12)

p= 0
Since I__k = I,, the double sum corresponding to (p>0, m>0) can

be combined with the double sum corresponding to (p<0, m>0).
Similarly, the double sum corresponding to (p<0, m>0) can be
combined with the double sum corresponding to (p>0, m<0).

The combination of the series for (p>0, m>0) and (p<0, m<0) gives

where Z denotes the term corresponding to p=0 and m=0.
0 m=

+ o 4w

1 . N 1

(_2) S 2: I, (w0 R ) [Ie’l I, o * Blcos[86,~a0,+p6])
p=+1 m=+1

+ I . IB,Z . E{cos[a91—892+p6]}
- Ia,l . Ia,E . E{cos[ael—a62+p6]}

- I e I . E{cos[881—892+p6]i (A-13)

B,2

where ¢« =m - p + 1 and 8 =m - p - 1. The combination of the
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series for (p<0, m>0) and (p>0, m<0) gives

+co 40

1
{"5) Z Z Im(wlu\zR\)) . [It‘,,l . IY,2 . E{COS[EGI-Yez—pSJ}

p=+1 m=+1

+ I e I

y,1 " Tg,2 v Elcoslye;=t0,-pol)

" Iy,1 0 Ty, Efcoslyey-yep-psl)

- Ii,l ) IE,2 : E(cos[&el—iez—pﬁjﬂ (A-14)

where y = m+ p+ 1l and £ =m + p - 1. The combination of the
series for (p=0, m>0) and (p=0, m<0) gives

4+
(—%ﬁ 2: I, (wju,R0) [Im-l,l " Tne1,2 Efcos[(m-1e-(m+1)6,]}
m=+1

+ Im+1,l . Im—1,2 . E{cos[(m+1)el_(m_1)92]}

= Ine1,1 " Ime1,p * Efcoslm+l)e -~(m+l)e,])

- Im—l,l CIpe1,2 E{cosf(m-l)el—(m-l)e2]}] (A-15)
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The term corresponding to (m=0, p=0) is

1 .
+ 5 Io(mlm21f{\))11’1 I1,2 E{sinelsineg} (A-16)

The comblnation of the series for (m=0, p>0) and (m=0, p<0) gives

40

1 .

(-5) 2: Io(wlm2Rv) . [}p+1,11p—1,2E{COS[(p+l)el"(p_1)e2_p6]}
p=+1

+ Ip_l,11p+1,2E{COS[(p—l)el—(p+1)e2_p5]}
- Ip_l’llp_l’2E{cos[(p-l)el—(p-l)eg—paj}

B Ip+1,1Ip+1,2E{°°S[(p+1)61'(p+1)92‘p5]}] (A-17)

When (A-13) through (A-17) along with(9)

4o wr;+2q wré1+2q RII;1+2q
Im(mleRV) = 2: m¥ag : (A-18)
- D q! (g+m)!
q=0
and
2 2
o w
1 2k
hr,k = %7 ff(w)e W' (wP)duw (9)
C

are substituted in (A-8), equation (8) is obtained for Rw(tl’tz)'
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APPENDIX IT

DERIVATION OF E{cos[Ael—Be2ips]}

FOR SOME CASES OF 6(t)

Consider 6(t) = X|e|, a biphase waveform with zero
mean value and the autocorrelation function given in equation
(11). Equation (10) is

E{cos[Ael—Be2ip6]}

= cos p 8 + E {cos[A6,-Be,]} 7 sin p &  E{sin[A6,-Beo,]}
= cos p § - E'{cosAel-cosBee}

+ cos p & « E {sinAs® -sinB62}

1

+ sinp 6§ ¢« E {sinAel-cosBe2}

1+

sinp 6§ » E {cosAel-sinBe2} (A-19)

But when 6(t) tle|l, cos A 8 = CosAlel, a constant. Also

sin A 8 = T%T sin A |e|. Then since E{e} = 0, (10) reduces to

cos p 8§ E{cos[Aeleeg]} =
(A-20)

cos p 6§ » [cosA|e] « cosB|e| + sinA|e| - sinBle| - r, ()]

where r (1) is equation (11) normalized by I6|2.
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If e(t) = mlsin(w t+g), where ¢ is a random variable with
uniform distribution, two terms combine in (A-19) to glve(l)

cos p § - E{cosAe1 * cosBe, + sinAe, - sinBe2}
4
= cosp 6§ - z € Jn(Aml) Jn(Bml) cos(nwlr) (A-21)

n=0

Since

cos[Am1 sin(mltl+€)] . sin[Bmlsin(w1t2+g)] =

+ o 400
2 z z € J2n(Aml)cos[2n(w1tl+£)] .
m=1 n=0

Jomo1 (Bmp)sinl (2m-1) (w t,+8)] (A-22)

and

E{cos[2n(w1tl+€)] . sin[(2m—1)(w1t2+£)]} =0

for any combination of m > 1 and n » 0; (A-19) reduces tc (A-21)
for the single tone modulation.

When 6(t) is a stationary gaussian process with zero
mean and variance og, consider the second order characteristic

equation for the gaussian process(IO)
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2
JA8.-JBe g
¢, (A,-B,7) = E{e 1 2}: eXp[_—29 (A2+B2)+ABK6(T)] (A-23)

Since (A-23) is real, (A-19) reduces to

cos p & - @e(A,B,T) (A-214)
By considering (A-20), (A-21) and (A-24) it 1s found that
E{cos[Ael—Bezj} = E{cos[Bel—Ae2]}

Then equation (8) reduces to the simpler form

Rw(r) 2: 2q ( 2 E{sinel . sinez}
to to Rg cos p § 5 2
+ T ha,u Re(a,a,r) + hB,u Re(B,B,T)
p=1 m=0 4 q
fe te RS cos p § 2
- 2h _h R, (a,B,T)} + h R, (y,y,1)
u u 0 2T u u ) s Y
*,u B, p=0 me1 2 a' (aq+m)! Y
-1\
2
+ hg,u Re(g,g,‘[) - ZhY,uhg,u Re(Y,E,T) } (A-25)

Wwhere Re(A,B,T) = E{cos [Ael—B62]}.
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APPENDIX IITI

THE CLOSED FORM SOLUTION FOR hm WHEN g(x) = 2(x)

k

The autocorrelation function of w(t) given in (8)
contains the constants hrk where r+k are odd Integers. For the

ideal limiter characteristic (2), closed form solutions exist
for these parameters. Since f+(w) = 2/w for Re[w] > 0 and

f (w) = 2/w for Relw] < 0, (9) becomes

2 2
_ 1 k-1 o w
hr,k = 577 Lw Ir(wP)eXp( 5 ) dw

C—

2 2

1 k-1 0w
+ 573 2w Ir(wP)exp( 5 ) dw (A=-26)

Cs

where C_ 1s the contour (-e-j», -e+j=) and C+ is the contour
(+e=j=, +e+je). By the change of variable w=jx and the substi-
tution of Ir<Z) = (7T Jr(jz), analytic continuation can be
applled for r>0 and k>0 to give

® 2.2
_ 2 k+r-1 (k-1) -0 x
hr,k = = (3) X Jr(xP)exp[ 5 ] dx (A-27)
When r+k is even the integrand of (A-27) is odd and hr K = 0.
3

When r+k is odd the integrand of (A-27) is even and

5 r/?2
rt&ﬂ% P 5
2 2 r+k -P
. + - . - —
= 22, (J)k r 1 . 20 lFl —_— r+1

hr,k T Kk 2 7
or(r+1) [
V2




BELLCOMM, INC. - A-1l -

where a solution has been used for the integral

Q0

ke1 2.2
X Jr(xP)exp —o2x dx (A-29)

0

in terms of the confluent hypergeometric function lFl(a,B,—X).(ll)

For the case when r and k are nonnegative integers lFl‘E%E; r+1;-x)
can be expressed in closed form in terms of first and second kind
modified Bessel functions. A 1list of these expressions is given

by Middleton.(12) A collection of hr Kk in closed form for low

2

>
order indices 1s given in Table 1. For Table 1, x = P2/20 is
the input signal-to-noise power ratio into the limiter.

If g(x) = 2(x), any of the h, . in (8) can be found in
H]
closed form from Table 1, by using the recurrence relations

_ 2(r+1) 4b(r+l)r

Bppok “Pp k- T F  Ppog k1t 2 Prgez (A730)

- _ b _ (k-r=2)
Prti,ke1 = 2 b x 7 Prol,k-l

2({k-r-2)r
t T B ko (A-31)
g P
and
2

h — (l"—-k) P (P—k)

rk+2 - 2 Ppxt T P2k T RS R (A-32)
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Equation (A-30) is derived from (A-27) by using the Bessel
function identity(l3)

(xP) = 2(r+1)

P 5% Jr+l(XP) - Jr(XP) (A-33)

Equation (A-31) is derived through a by-parts integration of
(A-27) and the application of (A-~30). Equation (A-32) 1is
derived through by-parts integration of (A-27). 1In the develop-~
ment of (A-30), (A-31) and (A-32) the integral in (A-27) is

restricted to [0,»). This 1s possible since the integrand in
(A-27) 1s even when r+k is odd.
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